Colicin N Binds to the Periphery of Its Receptor and Translocator, Outer Membrane Protein F
نویسندگان
چکیده
Colicins kill Escherichia coli after translocation across the outer membrane. Colicin N displays an unusually simple translocation pathway, using the outer membrane protein F (OmpF) as both receptor and translocator. Studies of this binary complex may therefore reveal a significant component of the translocation pathway. Here we show that, in 2D crystals, colicin is found outside the porin trimer, suggesting that translocation may occur at the protein-lipid interface. The major lipid of the outer leaflet interface is lipopolysaccharide (LPS). It is further shown that colicin N binding displaces OmpF-bound LPS. The N-terminal helix of the pore-forming domain, which is not required for pore formation, rearranges and binds to OmpF. Colicin N also binds artificial OmpF dimers, indicating that trimeric symmetry plays no part in the interaction. The data indicate that colicin is closely associated with the OmpF-lipid interface, providing evidence that this peripheral pathway may play a role in colicin transmembrane transport.
منابع مشابه
The antibacterial toxin colicin N binds to the inner core of lipopolysaccharide and close to its translocator protein
Colicins are a diverse family of large antibacterial protein toxins, secreted by and active against Escherichia coli and must cross their target cell's outer membrane barrier to kill. To achieve this, most colicins require an abundant porin (e.g. OmpF) plus a low-copy-number, high-affinity, outer membrane protein receptor (e.g. BtuB). Recently, genetic screens have suggested that colicin N (Col...
متن کاملTranslocation trumps receptor binding in colicin entry into Escherichia coli.
Of the steps involved in the killing of Escherichia coli by colicins, binding to a specific outer-membrane receptor was the best understood and earliest characterized. Receptor binding was believed to be an indispensable step in colicin intoxication, coming before the less well-understood step of translocation across the outer membrane to present the killing domain to its target. In the process...
متن کاملOn the mechanism and pathway of colicin import across the E. Coli outer membrane.
Colicins and phages parasitize outer membrane receptors whose physiological purpose is the transport of metabolites, metals, vitamins, and sugars. From mutagenesis studies, it is known that several colicins require the function of two outer membrane protein (Omp) receptors for cytotoxicity. A formidable list of problems associated with an understanding of a two receptor mechanism for colicin tr...
متن کاملLow Resolution Structure and Dynamics of a Colicin-Receptor Complex Determined by Neutron Scattering*
Proteins that translocate across cell membranes need to overcome a significant hydrophobic barrier. This is usually accomplished via specialized protein complexes, which provide a polar transmembrane pore. Exceptions to this include bacterial toxins, which insert into and cross the lipid bilayer itself. We are studying the mechanism by which large antibacterial proteins enter Escherichia coli v...
متن کاملStructure of colicin I receptor bound to the R-domain of colicin Ia: implications for protein import.
Colicin Ia is a 69 kDa protein that kills susceptible Escherichia coli cells by binding to a specific receptor in the outer membrane, colicin I receptor (70 kDa), and subsequently translocating its channel forming domain across the periplasmic space, where it inserts into the inner membrane and forms a voltage-dependent ion channel. We determined crystal structures of colicin I receptor alone a...
متن کامل